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Contract abstract 
The overall goal of this contract is to provide virtually all individuals with a cervical level 

spinal cord injury, regardless of injury level and extent, with the opportunity to gain additional 
useful function through the use of FNS and complementary surgical techniques. Specifically, we 
will expand our applications to include individuals with high tetraplegia (C1-C4), low tetraplegia 
(C7), and incomplete injuries. We will also extend and enhance the performance provided to the 
existing C5-C6 group by using improved electrode technology for some muscles and by 
combining several upper extremity functions into a single neuroprosthesis. The new technologies 
that we will develop and implement in this proposal are: the use of nerve cuffs for complete 
activation in high tetraplegia, the use of current steering in nerve cuffs, imaging-based 
assessment of maximum muscle forces, denervation, and volume activated by electrodes, 
multiple degree-of-freedom control, the use of dual implants, new neurotization surgeries for the 
reversal of denervation, new muscle transfer surgeries for high tetraplegia, and an improved 
forward dynamic model of the shoulder and elbow.  During this contract period, all proposed 
neuroprostheses will come to fruition as clinically deployed and fully evaluated demonstrations.  
 
 
Summary of activities during this reporting period 
  
The following activities are described in this report: 

• Predicting reach goal in a continuous workspace for command of a brain-controlled 
upper-limb neuroprosthesis 

• Wireless data acquisition module for use with a neuroprosthesis 
• Neural network controller for an upper extremity neuroprosthesis 
• Feed-forward control of neuroprosthetic systems characterized by redundant muscles 

acting on multiple degrees of freedom 
• An implanted neuroprosthesis for electrical stimulation through nerve- and muscle-based 

electrodes and myoelectric recording 
 
 
Predicting reach goal in a continuous workspace for command of a brain-
controlled upper-limb neuroprosthesis 
 
Contract section: E.1.a.iv  Command sources for high tetraplegia 
 
Abstract 

A controller for an upper-limb functional electrical stimulation system could use an 
intended reach goal to generate a set of stimulation patterns that would move the hand to the 
desired location via a reasonably naturalistic velocity profile. Although discrete classifiers have 
been successfully used to predict a movement goal from a fixed number of possible reach 
locations using neural activity recorded during movement planning, practical implementation of 
this paradigm for use in upper-limb neuroprostheses requires the ability to predict a reach goal 
anywhere within a person’s workspace. Using neural data collected from monkeys during brain-
controlled movements of a virtual cursor and robotic arm, we evaluated how well the direction 
versus magnitude of the final movement goal could be predicted from varying lengths of neural 



Quarterly Progress Report #15 N01-NS-1-2333 1/31/05 
  PI: R.F. Kirsch, Ph.D. 
 

 2  

data collected after the target appeared. Although a majority of the channels were significantly 
modulated with intended movement direction, only 10-20% showed any significant modulation 
related to the magnitude of the movement goal. We propose a method of trajectory generation 
that could use the more reliably encoded directional information in the neural activity to control 
both magnitude and direction of a goal oriented reaching movement. 
 
Introduction 

Recently, many studies have decoded intended movement from various parts of a 
monkey's cortex and used that prediction to move a computer cursor or robotic device in real 
time [1-7].  This type of a movement-related brain-machine interface (BMI) has many potential 
applications for severely paralyzed individuals. We are particularly interested in using brain 
recording technologies as a command source for restoring arm and hand function in people with 
spinal cord injures at the C4 level or higher. Our colleagues in the Cleveland Functional 
Electrical Stimulation (FES) Center are expanding the current stimulation technology to be able 
to restore all the degrees of freedom necessary to regain practical movements in a paralyzed arm 
and hand [8-10]. However, command signal options to direct FES-generated limb movements are 
limited to what these severely paralyzed individuals can produce from the neck up. This includes 
facial movements, eye gaze direction, head tilt, voice commands, sip n’ puff, tongue-touch 
keypads, etc. Although these options may be effective, they are cumbersome and can interfere 
with eating, talking, and normal social interactions. A more natural option would be to access 
intended arm and hand movements directly from the brain.  

Previously, we have shown that monkeys can learn to make long continuous sequences of 
target-directed movements of a brain-controlled virtual cursor or robotic arm in three dimensions 
using unit activity from the arm area of the motor and premotor cortices [1, 2]. In that study, the 
animals had continuous proportional control of the X, Y, and Z trajectory components 
throughout the movement. Continuous proportional control of one's limb in space is necessary 
for many activities of daily living such as drawing, combing one's hair, and shaving. However, 
many practical activities consist primarily of reach-to-grasp movements. Several studies have 
recently demonstrated that the goal of an intended reach can often be predicted from the neural 
activity detected during the planning phase of the reaching movement [5-7]. The potential benefit 
of decoding the intended reach goal instead of decoding continuous path details is that the 
controller of an upper-limb FES system could execute the movement on its own once the reach 
goal is known. This could reduce the level of mental effort required of the user, and the FES 
controller could be programmed to make relatively straight trajectories with bell-shaped velocity 
profiles to produce more naturalistic movement paths than what may be produced when 
continuous brain control is used throughout the movement.  

Studies that have focused on goal prediction have used discrete classifiers to predict 
which of a fixed number of targets an animal was planning on moving to. This process of 
discrete target selection is particularly well suited to certain computer-based selection tasks 
where the desired letters or icons can be displayed within the limited number of discrete 
locations that the neural classifier can accurately identify.  However, this type of system is less 
practical for goal-directed reaches in the physical world where the objects can be located in a 
continuum of positions throughout the workspace.   
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Methods 
The details of the experimental setup have been reported elsewhere [1, 2] and are 

summarized here. A Rhesus macaque was trained to do a three-dimensional (3D) center-out arm 
movement task viewed in a virtual environment. The animal was rewarded for moving his arm, 
and thus the virtual cursor, from the center of the workspace to one of eight outer targets that 
would appear in his virtual environment. Once trained in the center-out task, the animal was 
implanted with microwire electrode arrays in the arm area of the motor and premotor cortices. 
The animal then had to do the same 3D virtual center-out task by moving the virtual cursor 
directly with its recorded neural activity while both of its arms were restrained.  

The decoding algorithm used to convert neural firing rates into cursor movements was 
iteratively determined through a coadaptive training process. At each time step, change in cursor 
position was determined by a linear sum of each unit’s normalized firing rate times a set of X, Y, 
and Z coefficients. These coefficients were iteratively refined during each training session based 
on the neural activity produced by the animal as it attempted to move the brain-controlled cursor. 
In this parallel learning process, the 
animal adapted its neural output to be 
more effective in moving the virtual 
cursor via the current decoder. 
Simultaneously, the decoder was 
regularly adapted to be more effective 
based on the neural activity that the 
animal had produced in recent trials. 
This parallel learning environment 
allowed the animal to explore new, 
more-effective ways of encoding 
intended movement because the 
decoding algorithm could track and 
adjust to learning-induced changes in the 
animals firing patterns.   

On some days, a six-degree-of-
freedom robotic arm was inserted into the control loop. The monkey still viewed the 3D center-
out task in the virtual environment. However, instead of controlling the cursor directly with its 
decoded brain signals, the brain signals controlled the movements of the robot, and a position 
sensor on the end of the robot controlled the location of the cursor in the virtual workspace.  

Once the coadaptive process had converged to a stable set of coefficients, the coefficients 
were held constant and the animal had to move the robot to targets that appeared at random 
locations distributed throughout the virtual workspace at radial distances varying from 3-9 cm.  

Both the average firing rates and linear filters were used to predict intended movement 
magnitude (i.e. distance between start position and target) using the firing activity of each unit 
immediately after the target appeared. Data segments tested varied from 90-660 msec. Each 
unit’s initial firing rate was also tested, via linear regression, for significant modulation with 
respect to movement direction (unit vector pointing from the start position to the target) and to 
the total movement (full vector between the start position and the target).  

The 400 movement trials were also randomly assigned to ten different training and 
testing sets. Units in the training set that were significantly modulated with desired movement 

 
 

Figure 1. Center-out brain-controlled cursor trajectories to 
eight radial targets located at the corners of an imaginary 
cube. The eight sets of 3D trajectories are split into two 
plots for easier 2D viewing. Trajectory shading is color-
coded to match the intended target (shaded outer rings). 
Black dots indicate when the target was successfully hit. 
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magnitude within a 75% level of confidence where then used to predict movement magnitudes 
on the testing data via linear filters.  

 
Results 

The coadaptive training process regularly converged on a decoding algorithm that 
enabled the animal to fairly accurately move the brain-controlled cursor to the targets. An 
example of brain-controlled trajectories to the eight targets is shown in Figure 1. More details of 
the general results of this coadaptive training have been published elsewhere [1, 2]. 

Figure 2 plots the percentage of units whose average firing rates were significantly 
modulated (alpha=0.05) with magnitude, direction, or total movement (incorporates both 
magnitude and direction). While most units where significantly modulated with movement 
direction or total movement, only a small percentage showed modulation with movement 
magnitude. 

 
 
When predicting movement magnitude 

in the testing sets using linear filters generated 
from the training data, the correlation between 
actual and predicted movement magnitude was 
always positive for filter lengths of five bins 
or more. However, average correlation 
coefficients were still very low, even at longer 
filter length as shown in Figure 3.  
 

Discussion 
Based on these offline prediction results and the small percentage of units that showed 

any significant modulation with movement magnitude, accurate prediction of the intended 
magnitude of a reach goal from a continuum of possible magnitudes is unlikely in a brain-
controlled upper-limb FES system. However, movement direction can be decoded fairly 

 
 
Figure 3. Average correlation coefficients for predicted 
versus actual movement magnitudes from the ten 
different combinations of training/testing data. 

 
Figure 2. Percentage of recorded units whose firing 
rates were significantly modulated with movement 
direction, movement magnitude, and total movement 
vector from start position to target. Significance 
modulation was determined by linear regression 
(alpha=0.05) using firing rates averaged over 
different numbers of bins. Rates used in the brain 
control task were binned into 90 msec moving 
averages and updated every 30 msec. These bins of 
firing rates were further combined and averaged 
here. Therefore, one bin contains 90 msec of data, 
two bins encompass 120 msec of data, three bins 
encompass 150 msec of data, etc. with firing rates at 
the outer edges of the spread weighted less because 
they are not contained in overlapping bins.   
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accurately from the initial movement attempt as previously reported and as illustrated by the 
fairly reasonable directional accuracy throughout the trajectories in Figure 1. Directional 
accuracy greatly improved with use of adaptive decoding algorithms and regular practice. It may 
be that subjects will learn to also encode reach magnitude more accurately with regular practice 
if their limb controller utilizes that information in trajectory planning. 

Even if reach magnitude prediction from the initial neural activity doesn’t improve with 
practice, including an online correction factor may still enable accurate goal-oriented trajectory 
production. The controller would initiate a movement with an appropriate bell-shaped velocity 
profile using its best estimate of the intended magnitude and direction.  Because trajectories will 
be programmed to have different bell-shaped velocity profiles for different reach magnitudes, the 
user should be able to anticipate what the final reach position will be from this trajectory (much 
like a baseball player can learn to anticipate where a ball will land based on the evolving 
trajectory). The limb controller will scale the velocity profile up or down in both time and peak 
velocity based on desired reach magnitude. Therefore, larger reach distances will have a longer 
initial acceleration time, a higher initial acceleration, and a higher, later peak velocity compared 
to shorter reach distances. These clues early on in the movement may enable the user to predict 
eventual reach distance and create a neural ‘error signal’ that can be used to correct the evolving 
trajectory en route.  

Because reach magnitude errors result in either overshooting or undershooting the target 
distance, the movement vector needed to correct for these two conditions have opposite 
directions and are therefore easily conveyed by the subject’s neural activity. The subject would 
either think move toward the target or move away from the target depending on if the subject 
anticipated an under or overshoot of the reach goal respectively. These opposite directional 
signals would work like an accelerator or a brake on the evolving velocity profile. Although the 
magnitude of the ‘acceleration’ or ‘braking’ correction vector is unlikely to be well encoded in 
the neural signal, the size of its effect on the evolving trajectory can be adjusted based on the 
duration that the user makes the correction signal.  

This form of initial reach goal estimation and en route trajectory correction should enable 
a neuroprosthesis controller to utilize the higher resolution directional information in the neural 
signal to make target-directed reaching movements within a continuum of possible locations. 
Using brain activity to form preprogrammed trajectories to reach goals with natural velocity 
profiles instead of having the limb under continuous brain control throughout the movement may 
result in smoother, more natural looking reaching movements. However, for this to be true, the 
subjects need to be able to anticipate the final reach position that will result from the current 
velocity profile and ‘accelerate’ or ‘brake’ for the appropriate duration to make any needed 
adjustments to the evolving trajectory.  

End-point correction based on visual feedback is an integral part of normal arm 
movements. However, it is unknown how accurately subjects can predict final reach location 
from evolving trajectories and use the duration of a constant magnitude correction signal to 
correct for any perceived errors. It is likely that this will be possible with slower reaching 
movements but not rapid movements. We are currently designing a study to evaluate these issues 
of end-point prediction and correction in humans. 
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Wireless Data Acquisition Module for Use with a Neuroprosthesis 
 
Contract section: E.1.a.v  Sensory feedback of contact and grasp force 
 
Abstract 
 A general wireless data acquisition module (WDAM) is being developed for use with a 
neuroprosthesis. The WDAM is intended to be used with sensors such as the shoulder or wrist 
position transducer, finger-mounted joysticks, or remote on-off switches.  Currently these 
sensors are connected to a controller via cables, which are cosmetically unappealing to the user 
and often get caught on wheelchairs, causing them to be damaged.  Switch-activated transmitters 
mounted on walkers have been used previously in FES applications [1].  Recent advances in 
wireless technology have reduced the complexity and size of the wireless circuitry and have 
increased the likelihood that a small, low power, reliable wireless link could be assembled from 
commercially available components. 
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Methods 

In the current quarter, tests were performed to identify an inconsistent decrease in the 
transmission success that was seen in some of the orientation sensitivity measurements that were 
made in the previous quarter.  The ability of a single ‘master’ module to communicate to 
multiple ‘slave’ modules was demonstrated.  In addition, a secondary (rechargeable) battery was 
identified that had acceptable capacity and size for the WDAM applications.  Longevity and 
performance tests were performed on this battery.   

 
Orientation sensitivity variability 
 In the previous quarter’s report (QPR#14, Jul-Sept 2004), measurements of the WDAM’s 
transmission success at different distances and orientations showed an occasional drop in the 
transmission success rate from around 95% to around 80%.  One of the potential causes was a 
battery-connector cable that was being used to make it easier to switch batteries.  The cable was 
longer than it needed to be and could have picked up electrical noise.  Tests were performed with 
a shorter, twisted-pair cable to see whether this eliminated the variability.   

 
Multiple ‘slave’ demonstration 
 All of the tests presented in previous progress reports consisted of one WDAM 
communicating with another WDAM.  The ability of a module to communicate with more than 
one module had not been presented.  To demonstrate this capability, one WDAM was 
programmed to be a ‘master’ module, which can request data from one or more ‘slave’ modules.  
The ‘master’ module was first programmed to request data just from one of the ‘slave’ modules, 
then just from a second ‘slave’ module.  Then the ‘master’ module was programmed to alternate 
its data requests (see Table 1).  Tests were 
performed with the ‘slave’ modules turned 
on and off to demonstrate the effect on 
transmission success.  A CRC error-
checking algorithm was used to determine if 
the data was received properly.  For each 
test, 1000 data requests were sent, and the 
number and types of errors were counted 
and reported to a PC via a serial connection.   
 
RechargeableBattery 
 Although a small zinc-air coin cell 
battery has been identified for the WDAM 
that has acceptable longevity (65-75 hours of 
use), there was some concern about the 
practicality of having the user open the 
enclosure and change the battery every 
couple of weeks.  To alleviate this concern, a 
secondary (rechargeable) battery has been 
identified that is an acceptable size and has 
sufficient capacity for the intended 
applications.  The battery is a lithium 

 
Figure 4.  Rechargeable battery. 
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polymer rechargeable cell in a low-profile prismatic pack (see Figure 4).  The size of the battery 
is 31 mm long, 21 mm wide and 5.5 mm high.  This size fits well with the proposed dimensions 
of the miniaturized version of the WDAM, so that the battery can be placed underneath the 
circuitry.  The battery has a nominal capacity of 180 mA·hr. 
 The actual capacity of this battery was evaluated in two ways.  The first method was 
identical to the one used to evaluate other batteries for the WDAM.  The battery was connected 
to a WDAM that was configured as a ‘slave’.  A ‘master’ WDAM continuously requested data 
from the ‘slave’.  The ‘master’ WDAM was serially connected to a PC, which recorded the status 
at 5 minute intervals.  The capacity of the battery was determined by measuring the average 
current draw and identifying when the ‘slave’ module stopped transmitting data. 
 A second method that was used to evaluate the battery capacity was to use a 
commercially-available battery testing system (Arbin Instruments, College Station, TX).  This 
system allows a programmable test protocol, where one can repeatedly charge and discharge a 
rechargeable battery at preset voltage and current levels, while these parameters are monitored 
and recorded. 
 
Results 
 
Orientation sensitivity variability 
 Observation of the transmitted data on an oscilloscope indicated that more electrical noise 
existed with the longer, untwisted battery cable than with a shorter, twisted-pair cable.  When the 
original cable was placed in a position where the noise was maximized, and then was replaced 
with the twisted-pair cable, the transmission success rate improved from 78.5% to 96.0%.  A 
repeat of the distance and orientation measurements with the new battery cable showed that the 
occasional drop in transmission success had been eliminated. 
 
 Multiple ‘slave’ demonstration 
 When the ‘master’ module was tested with each ‘slave’ module separately, the 
transmission success rate was around 96% (Table 1).  When the ‘master’ module was 
programmed to alternate the data request between the 2 ‘slave’ modules, the success rate was 
similar.  To further demonstrate that the data was coming from both ‘slave’ modules, tests were 
performed with one of the ‘slave’ modules off.  When this was done, the success rate was 
approximately half of the success rate with both ‘slaves’ on. 
 

 
 
 

Test % Acknowledged 
Master to Slave1 only 95.3% 
Master to Slave2 only 96.6% 
Master alternating between slaves, Slave 1 on, Slave 2 off 49.3% 
Master alternating between slaves, Slave 1 off, Slave 2 on 49.3% 
Master alternating between slaves, Slave 1 on, Slave 2 on 95.4% 

 
Table 1.   Single ‘master’, multiple ‘slave’ test results. 
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RechargeableBattery 
 The voltage produced by the lithium polymer rechargeable battery was higher (4.09 V) 
than the primary batteries that had been tested previously (Table 2).  This allowed the power 
regulator to draw less current (2.7 mA).  The battery was able to power the module continually 
for over 68 hours, producing a measured capacity of 184 mA·hrs.   

 The results of the cycled charge/discharge test are shown in Figure 5.  For this test, the 
battery tester was programmed to charge the battery to 4.2 volts at a charging current of 90 mA.  
It then switched to discharging the battery at a constant 3 mA current.  The test was programmed 
to end when the battery voltage decreased to 2.5 volts.  With these parameters, the battery lasted 

Table 2.  Wireless Data Acquisition Module Battery Tests 
     Size Rated Starting Ending Current Running Actual 

Battery Brand Model (Diam. x Ht.) Capacity Voltage Voltage Draw Time Capacity 
Type     (mm) (mA-hr) (V) (V) (mA) (hrs) (mA-hrs) 

Primary                   
Zinc Air Energizer 675 11.6 x 5.4 600 1.38 0.99 9.5 64.9 617 
Lithium Energizer 2032 20.0 x 3.2 225 3.2 0.9 3.0 40.9 123 
Silver Oxide Duracell 76S 11.6 x 5.3 175 1.6 0.1 6.3 28.6 180 
Lithium Duracell 1/3N 10.8 x 11.6 160 3.25 0.93 3.4 32.9 112 
Lithium Tadiran TL5186 22.5 x 7.5 400 3.66 0.97 3.2 40.8 131 
Rechargeable           
Lithium Polymer Ultralife UBC502030 21.0 x 31.0 x 5.5 180 4.09 0.00 2.7 68.5 184 
 

Current(mA), Voltage(V) vs. Test Time(hr),  
UltraLife Lithium Polymer Battery (180 mA-hr), Cycle 3
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Figure 5. A cycled battery charge/discharge curve for the lithium polymer battery. 
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for 66.7 hours, for a measured capacity of 200 mA·hrs.  Both methods indicated that the battery 
capacity would be higher than the manufacturer’s 180 mA·hr rated capacity.  Thus, even if the 
module was used 16 hours a day, it would be able to last four days before it would need to be 
recharged.  It is anticipated that neuroprosthesis users will recharge their systems either nightly 
or ever other night.  
 
Next Quarter 
 In the next quarter, we will work with a manufacturer who has been selected to   
miniaturize the design of the WDAM.  Several prototypes will be manufactured, and a custom 
enclosure will be designed. Also in the next quarter, we will investigate optimizing the data 
packet parameters and filter settings for the “medium-speed” and “high-speed” WDAM versions. 
 
References 
[1] Z. Matjacic, M. Munih, T. Bajd, A. Kralj, H. Benko, and P. Obreza, "Wireless control of 
functional electrical stimulation systems," Artif Organs, vol. 21, pp. 197-200, 1997. 
 
 
Neural Network Controller for an Upper Extremity Neuroprosthesis 
 
Contract section: E.2.a.ii.4.1  EMG-based shoulder and elbow controller 
 
Abstract  
 The long term goal of this project is to develop a controller for an upper extremity 
neuroprosthesis targeted for people with C5/C6 spinal cord injury (SCI). The challenge is to 
determine how to simultaneously stimulate different paralyzed muscles based on the EMG 
activity of muscles under retained voluntary control. The proposed controller extracts 
information from the recorded EMG signals and processes this information to generate the 
appropriate stimulation levels to activate the paralyzed muscles. The goal of this project was to 
design and evaluate this controller using a dynamic, three-dimensional musculoskeletal model of 
the arm.  Different arm movements were recorded from able bodied subjects and these 
kinematics served as input to the model. The model was modified to reflect C5/C6 SCI, and 
inverse simulations were run to provide muscle activation patterns corresponding to the 
movements recorded.  A set of “voluntary” and “paralyzed” muscles was selected for the 
controller based on each muscle’s relevance as suggested by the simulations. Activation patterns 
were then used to train a dynamic neural network that predicts “paralyzed” muscle activations 
from “voluntary” muscle activations. The neural network controller was able to predict the 
activation level of three paralyzed muscles with less than 2% average prediction error, using four 
input muscles as inputs. 
  
Introduction 
 Individuals with C5/C6 SCI lose control over a number of muscles in their upper 
extremity. Their hand muscles are paralyzed, there is partial loss of wrist and elbow extension, 
and several shoulder functions are lost, including horizontal flexion and adduction. Arm 
movements are a coordinated action of several muscles acting upon different joints resulting in a 
large workspace and fine positioning control. Paralysis of some these muscles lead to a 
considerable reduction in the reachable workspace. Functional Electrical Stimulation (FES) can 
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Figure 6.  Approach to develop the controller. 

be used to stimulate paralyzed muscles whose innervations remain intact, restoring function in 
individuals with SCI.  However, determining the timing and intensity required for 
simultaneously stimulating different paralyzed muscles in the arm is still a big challenge. 
 The long term goal of this project is to determine which, how and when to stimulate each 
of the available muscles in a coordinated fashion to increase the arm’s workspace and thus 
provide a functional benefit to the paralyzed individual. The proposed approach exploits retained 
voluntary function by extracting the movement intention from the EMG activity of muscles that 
are under voluntary control and using this information to determine the levels of stimulation 
required. Based on this principle, positioning and stability in the limb become a synergistic 
action between the remaining nervous system and the adaptive mechanism of the artificial 
controller. 
 Previous work in our lab has shown that an approach of this kind is feasible. Au et al. [1] 
demonstrated that a neural network is capable of predicting shoulder and elbow joint angles 
using EMG signals from selected muscles. Parikh et al. [2] used a musculoskeletal model of the 
arm to obtain the muscle activations required to hold the arm in a certain posture and then used a 
neural network to predict paralyzed muscle activations using voluntary muscle activations as 
inputs. Finally, Giuffrida [3] used a neural network to predict triceps stimulation levels for elbow 
extension using the EMG activity from four arm muscles as the input.  This work gives strong 
evidence that EMG signals are useful to predict movement intention and generate adequate 
stimulation patterns. 
 The specific goal of this study was to show the feasibility of controlling a neuroprosthesis 
using retained voluntary function by designing a neural network-based controller that will 
estimate the activation levels of paralyzed muscles using the activation levels of voluntary 
controlled muscles as inputs. In a future application the controller will determine the stimulation 
levels for a neuroprosthesis that will restore multiple arm functions simultaneously.   
 
 
Methods 
 
A. General Approach 
 
 Figure 6 summarizes the overall approach used in this study. Experiments were 
conducted during which the kinematics of the upper extremity of able-bodied subjects were 
recorded during a series of arm movements. These data were processed to obtain the kinematics 
of the shoulder and elbow joints. The kinematics became the input to a musculoskeletal model of 
the shoulder and elbow that was modified to reflect a C5 SCI individual by reducing the maximal 
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Figure 7.   Experimental Setup 

forces that each muscle could generate, including setting muscles that are typically paralyzed to 
have zero maximum force. Furthermore, the maximum force of three paralyzed muscles was set 
to 50% of able-bodied maximum activation to simulate the potential of FES to generate force in 
those muscles. Inverse dynamic simulations were run to predict the muscle activation patterns, 
both “voluntary” and “paralyzed”, necessary to drive the movements recorded. An artificial 
neural network was then trained to predict ‘paralyzed’ muscle activations from ‘voluntary’ 
muscle activations, mimicking the real situation where EMG signals from voluntarily controlled 
muscles will be processed by a neuroprosthesis controller and used to determine the appropriate 
levels of stimulation for paralyzed muscles. 
 
B. Experimental Recordings. 
 
 Arm movements from able-bodied 
subjects were recorded using an Optotrak 
motion analysis system (Northern Digital 
Inc.) as shown in Figure 7. Sets of LED 
clusters were fixed over the thorax, upper 
arm and forearm of the subject. The 
locations of the scapula and clavicle were 
difficult to track dynamically so a scapular 
palpator with a fourth cluster of LEDs was 
used to track the position of the scapula 
during static trials in different positions 
within the workspace [4]. This data and the 
dynamical orientation of the humerus were 
used to recover the orientation of the scapula 
and the clavicle representing a standard 
shoulder rhythm [5]. Specific bony landmarks were recovered during the movements in order to 
generate coordinate systems and obtain orientations for each joint in the shoulder and elbow. The 
recording and data processing were done following the International Shoulder Group 
recommendations for shoulder and elbow recordings [6, 7]. The movements performed included 
both single joint movements (shoulder abduction/adduction, flexion/ extension, horizontal 
flexion/extension, internal/external rotation and elbow flexion/extension and 
pronation/supination) and a set of functional movements comprised of activities of daily living 
(ADL) such as feeding and reaching objects. Data were recorded at 50Hz. 
 
C. Simulations with Musculoskeletal Model 
 
 Inverse dynamic simulations were run with a musculoskeletal model of the shoulder and 
elbow to estimate muscle activation patterns needed for an SCI-modified muscle set to generate 
the recorded movements. The model was developed at the Delft University of Technology [8] 
and consisted of the five bones of the arm (thorax, clavicle, and scapula, humerus, radius and 
ulna), 29 muscles, the conoid ligament and 17 degrees of freedom distributed over five joints. 
The model was modified to reflect the conditions of a C5/C6 SCI subject by decreasing the 
maximum forces that could be generated by each muscle. Muscles with some voluntary control 
have nonzero maximum activations, while paralyzed muscles have zero maximum activation. 
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Several paralyzed muscles that could be stimulated to produce muscle contractions were 
included in some simulations with a maximum activation of 0.5. 
 
D. Muscle Selection 
 
 To select a set of ‘paralyzed’ muscles for electrical stimulation, extensive simulations 
were done with the ‘voluntary’ muscles augmented with different combinations of ‘stimulated’ 
muscles. A realistic selection consistent with a future application requires a set of ‘stimulated’ 
muscles that is paralyzed but not denervated in a typical C5 SCI individual, and also they must 
be important contributors to the movements and functional tasks to be restored. This was 
evaluated using the outcomes of the simulations performed with the model, and the muscles were 
chosen based on the need for their mechanical contributions. First, simulations were performed 
with an able-bodied model (i.e. no force reductions). The estimated maximum activations for the 
tested movements were compared with those available in the reduced C5 SCI model (without 
any added “stimulated” muscles). Muscles that required more activation than could be provided 
by the C5 model were selected for possible inclusion in the ‘stimulated’ muscle set. Second, the 
percentage of failure of simulations that included the “stimulated” muscle set was used to 
determine the minimal set of muscles required to successfully perform the movements recorded 
during the experiments. 
 To select a set of ‘voluntary’ muscles to extract information and become input to the 
controller, they should be under at least partial voluntary control and be available for EMG 
recordings in a neuroprosthesis. A multi-input multi-output (MIMO) system identification 
technique was used with able-bodied data to obtain the frequency response between 12 input 
“voluntary” muscle activations, and the activation of the three muscles ultimately chosen as 
output “stimulated” muscles. The partial coherences between each potential input muscle and the 
three output muscles was used to assess common information that would indicate which input 
muscles were likely to be the most effective in predicting needed output activations 
 
E. Artificial Neural Network 
 

The goal of the eventual FES controller is to predict the stimulation levels needed in 
paralyzed muscles using information from activations of muscles under voluntary control. We 
evaluated the use of an artificial neural network (ANN) to map the dynamic and nonlinear 
relationship between the input and output muscle activations. A typical two layer feed-forward 
ANN with a non-linear tangent-sigmoidal activation function for the hidden layer and a linear 
output layer was used. The performance of all the trained networks was measured as the ability 
to predict data not used during the training, i.e. the ability to generalize. This is a highly desirable 
feature of the controller because it must be capable of assisting movements in many different 
conditions and locations, not just in the specific ones used during training. The data was split into 
training, validation and testing data sets. Validation is used during the training to monitor the 
error generated by data not used for training. When this error increases, the ANN is memorizing 
the training data set and the network is loosing its ability to generalize. The testing data set is 
used to evaluate the performance of the ANN after the training is finished. The goodness of fit of 
the ANN was quantified as the average RMS error between the original model-generated muscle 
activations (for the “stimulated” muscles) and those predicted by the ANN based on “voluntary” 
muscle activations. All prediction errors in the Results will be presented as a percentage of 
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Figure 8.  Model input and output. 

maximum muscle activation. All ANNs were trained using MATLAB’s Neural Network 
Toolbox (The Math Works, Inc.). 
 
Results 
 
A. Musculoskeletal Model: Kinematic Input And 
Muscle Activation Output 
 
 Figure 8 shows an example of a typical input 
and output data trial corresponding to fifteen seconds 
of reaching movements at the shoulder level. The top 
five plots show the Euler angles describing the 
orientation of the thorax, clavicle, scapula, humerus 
and forearm. Each plot shows lines corresponding to 
each joint’s degrees of freedom (three in the shoulder 
joints and two in the elbow). The lower six plots show 
the model-predicted activation patterns of six 
representative muscles during this movement. They 
are the output of a simulation corresponding to a C5 
SCI individual with FES of the three paralyzed 
muscles selected as will be shown below.  
 
B. Muscle Selection 
 

Three paralyzed muscles including serratus 
anterior, triceps, and pectoralis major were found to 
be the most critical for adding back into the model as 
‘stimulated’ muscles. By removing muscles one at a 
time from the ‘stimulated’ muscle set, it was clear that 
the serratus anterior was critical for all the movements 
– the failure rate was very close to 100%. When 
triceps was not present in the stimulation set, mean 
failure was 8% and it was a key muscle for the ADL 
task of eating (19.8%) and for high reach movements 
(44.3%). The pectoralis major (clavicular portion) 
was chosen for its contribution during high reaching 
movements and horizontal flexion movements 
towards the center of the workspace (46.3% and 
11.5% failure respectively).   

Four voluntary controlled input muscles 
including trapezius, deltoid, supraspinatus and 
supinator were selected for having higher partial 
coherences resulting from the MIMO system 
identification procedure performed between the 12 
candidate input muscles and the three ‘stimulated’ 
output muscles. Variations over this set that included 
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Figure 9. Reaching above the shoulder level trial (15 sec). Solid lines show the prediction and dashed 
lines show the target activations generated by the model. 

the Biceps and Brachioradialis were also tried, obtaining similar prediction results. This 
demonstrated that four muscles is a feasible quantity for a real application and that there is 
probably a broad range of muscles to choose from in the C5/C6 SCI population.  
 
C. Neural Network Predictions. 
 

Figure 9 is an example of a 15 second trial representing a reaching movement above the 
shoulder level. The first plot shows humerus elevation and elbow flexion/extension angles 
illustrating the movement performed. The second plot shows the “voluntary” activations used as 
inputs in this particular case to predict the “paralyzed” muscle activations. The lower plots show 
the prediction of each output paralyzed muscle. Solid lines show the neural network predictions 
and dotted lines show the target muscle activations generated by the model. The mean prediction 
error for these three muscles during this particular movement was 1.44% of maximum muscle 
activation. Notice that the prediction has the same dynamic characteristics of the simulated 
activations and that the muscle activations are predicted quite accurately. 
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Discussion 
 
 The goal of this study was the design of a controller capable of using retained voluntary 
function to extract the movement intention and generate the appropriate levels of stimulation for 
paralyzed muscles in people with C5/C6 SCI. After recording movements during experiments 
with able-bodied subjects and obtaining muscle activation patterns from inverse dynamic 
simulations with a musculoskeletal model of the arm, an artificial neural network was 
successfully trained to predict paralyzed muscle activations using voluntary muscle activations 
as inputs. 
 These preliminary findings demonstrated that an ANN is a good open-loop block for the 
proposed controller. It was capable of predicting muscle activations with an accuracy of less than 
2%. EMG signals are representative of muscle activations levels; therefore, this approach can be 
implemented in humans by using signals directly recorded from voluntarily controlled muscles. 
Errors are anticipated using an open loop strategy as it does not account for changes in the arm 
properties during different activities and conditions (e.g. fatigue). If the user is not able to 
compensate voluntarily for these expected errors, an adaptive element that accounts for these 
disturbances can be added as a feedback block for the controller. 
 Incorporating retained voluntary control mechanisms exploits the immense adaptive 
ability of the human nervous system. The hypothesis of this work is that intact portions of the 
nervous system can readapt to the use of the neuroprosthesis and learn to interact with it. The 
proposed controller will successfully interact with the remaining motor function in a continuous 
adaptation process creating a synergistic relation between the nervous system and the 
neuroprosthesis that will restore function in a natural manner.  
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Feed-Forward Control of Neuroprosthetic Systems Characterized by 
Redundant Muscles Acting on Multiple Degrees of Freedom 
 
Contract section: 

E.2.a.ii.  Simultaneous and natural control of multiple arm and hand functions. 
 
Abstract 

We created a time-varying static biomechanical model of the thumb that will allow us to 
generate time-varying, coupled, and redundant input-output data (i.e., isometric forces at the tip 
of the thumb in response to electrical stimuli).  
 
Objectives 

We previously developed a method for implementing feedforward neuroprosthetic 
controllers for musculoskeletal systems with multiple degrees of freedom and complex 
mechanical interactions. These controllers rely on inverse models of the musculoskeletal systems 
under control. Our tests showed that controller performance was poorer than we expected, and 
we attribute the poor performance to redundancy of the data used to train the controllers. The 
inverse relationship between muscle output and electrical stimulation is not unique (most joints 
have redundant actuation with non-stationary input-output muscle properties and coupled 
degrees of freedom) and if left unrestricted, the controller implementation process may result in 
an unsuitable inverse. Thus, we must choose a single inverse solution before the controller can 
be created. Our present work involves obtaining this unique inverse solution and using it to train 
a controller capable of providing independent control of coupled degrees of freedom.  

Our general approach will be to first create a time-invariant forward neural network 
model of the thumb using time-varying, coupled and redundant data relating muscle stimuli to 
muscle outputs. We will use the forward model to average the input-output data and thus 
eliminate its time-variance. We will then choose unique input-output data from the time-
invariant set that optimize specific performance criteria, such as minimum co-activation, 
allowing us to eliminate redundancy, obtaining thus a unique solution. We will train an inverse-
model, static, feedforward, artificial neural network controller with these optimal input-output 
data. We will create, in simulation, a time-varying static biomechanical forward model of the 
thumb, which we will use as a test-bed prior to experimental studies to generate time-varying, 
coupled and redundant input-output data. We will test the controller isometrically with the 
simulation model and with able-bodied and spinal cord injured human subjects. We will first 
study redundancy by stimulating only a pair of antagonists (extensor pollicis longus and abductor 
pollicis brevis) controlling flexion/extension of the thumb’s carpometacarpal joint. We will 
incorporate coupling to the system by stimulating two additional muscles (flexor pollicis longus 
and adductor pollicis) allowing us to control abduction/adduction as well. We will use the same 
approach for all computer model and real musculoskeletal systems studies. 
 
Structure of the biomechanical model 

A time-varying static biomechanical model of the thumb was created that allows us to 
generate input-output data that are time-varying, coupled, and redundant (i.e., isometric forces at 
the tip of the thumb in response to electrical stimuli). We modeled the metacarpal bone and 
phalanges with cylindrical rigid bodies (Table 3) joined by two joints. The skeletal model 
parameters were taken from the literature [Valero-Cuevas et al. 2003, Secco Magenes 2002, 
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Lewis 2001]. We fixed the interphalangeal (IP) joint and modeled the proximal and distal 
phalanges as a single rigid body (Figure 10). We modeled the metacarpophalangeal (MP) joint as 
a revolute joint linking the metacarpal to the phalanges, and the carpometacarpal (CMC) joint as 
a universal joint linking the metacarpal bone to the trapezium, which will be fixed in space (i.e., 
no arm rotation will be allowed). The tip of the thumb was also fixed in space to a force/moment 
sensor so we could measure isometric forces. 
 

Table 3. Skeletal parameters of the thumb. 
Bone Length (cm) Radius (cm) Specific mass (g/cm3) 
Metacarpal 7.20 1.50 1.1 
Proximal phalanx 3.90 1.10 1.1 
Distal phalanx 2.00 1.10 1.1 

We control the isometric forces at the tip of the thumb through forces and moments 
acting upon the CMC and MP joints. Its coupled degrees of freedom (i.e., flexion/extension and 
abduction/adduction) actuated by redundant muscles can be excited in human subjects with the 
use of an implanted upper-extremity neuroprosthesis or surface stimulation. 

The peak isometric force and muscle geometric parameters for four muscles included in 
the model (extensor pollicis longus (EPL), flexor pollicis longus (FPL), abductor pollicis brevis 
(AbPB), and adductor pollicis (AdP)) were taken from the literature [Esteki and Mansour 1997, 
Jacobson et al. 1992, Lieber et al. 1992, Brand et al. 1981] and are summarized in Table 4.  
 

Table 4. Muscle parameters. Lo represents the optimal muscle length. Fo is the maximum force 
produced when the muscle is at its optimal length. Lst is the tendon slack length. 

Muscle Lo (cm) Fo (N) Lst (cm) 
EPL 5.7 38 21 
FPL 5.9 102 32.15 
AdPo 3.6 18 2.25 
AdPt 3.6 48 3.5 
AbPB 3.7 30 2.55 

  

 

 
 
Figure 10. The trapezium and the tip of the thumb are both fixed in space. The IP joint is 

fixed. The MP joint is modeled as a revolute joint while the CMC joint is 
modeled as a universal joint. 
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Individual muscle forces (Fm) depend primarily upon their muscle activations and time. 
We used a Hill based muscle model incorporating length-tension properties. We omitted 
activation dynamics and force-velocity properties because we will perform static analysis only.  
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Fm  = muscle force 
f(i)       = fatigue factor 
A = muscle activation 
KT = tendon stiffness 
r = moment arm 
θ2 = MP flexion/extension angle 
θ1 = CMC flexion/extension angle 
φ1 = CMC abduction/adduction 
angle 
Lm = muscle length 
Lt = tendon length 
Lmt = muscle-tendon length 
Lst = tendon slack length 
L’ = muscle-tendon unit length 
when all joints are at 0o 

Lo = optimal muscle fiber length 
~ = normalized 
 

 
Muscle activation is modeled as a nonlinear function of the electrical stimulus given by a 

 

 
Figure 11. Simple nonlinear recruitment characteristics. Muscle activation 
as a function of normalized muscle stimulus. 
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sigmoidal relationship of the form ( )ue
uA −+

=
1

1
)( (Figure 11). 

 
To account for the time-varying properties of muscle, we introduce the linearly-

decreasing normalized fatigue factor f(i) (Figure 12) to scale the maximum muscle force oF
�

. The 
fatigue factor reduces the maximum muscle force by 0.042% with every muscle contraction. 
This rate is based on a 15% reduction after approximately 360 contractions in recruitment tests 
performed by Kilgore [Kilgore 1987]. We also add or subtract random noise (as a percentage of 
the maximum muscle force) to the muscle force (Fm) with every muscle contraction. We assume 
muscle potentiation is eliminated by conditioning contractions prior to performing any 
measurements. 

The thumb joints are acted upon by active and external forces/moments, due to muscle 
contraction, gravitation, and contact forces (Figure 13). In our application, we control the muscle 
forces by stimulation, and measure the contact forces/moments at the thumb tip. Thus, we will 
write six equations balancing the moments and forces in all three directions, and solve for the six 
contact forces/moments. 
 

 

 
Figure 12. Normalized fatigue factor f(i) as a function of muscle contraction. 
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The moments at the MP joint are those due to the contact force (MF), the weight of the 
phalanges (MW2), the contact moment (M), and the muscles crossing the MP joint (Mmuscles_MP). 
The sum of the forces at the MP joint must also be zero. 
 
MMP ( j ) = 0 = MF( j ) + MW 2( j ) + M( j ) + Mmuscles_ MP ( j )          

0 = R( j ) + F( j ) + FW 2( j ) . Therefore, the reaction force is ( ))(2)()( jWjj FFR +−=  ; for j = x,y,z 
 

At the CMC joint, the moments are those due to the reaction force at the MP joint (MR), 
the weights of the metacarpal (MW1), the moment at the MP joint (MMP), and the muscles 
crossing the CMC joint (Mmuscles_CMC). 
 
MCMC ( j ) = 0 = MW1( j ) + Mmuscles_ CMC ( j ) + MR ( j ) + MMP ( j )       ; for j = x,y,z 
 

Figure 13. Free body diagrams of the metacarpal and phalangeal links. Both links have the same 
orientation in space with respect to the abduction/adduction plane, given by φφφφ1. 



Quarterly Progress Report #15 N01-NS-1-2333 1/31/05 
  PI: R.F. Kirsch, Ph.D. 
 

 22  

We do not include the equations for the joint contact force at the CMC joint because we 
do not need to know this force. 
 

The individual moments are given by the following equations. The muscle moment 
equations are given in the global coordinate system, assuming φ is zero. 
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where, 
F = Force exerted at the tip of the 

thumb. 
M = Contact moment exerted 

at the tip of the thumb. 
R = Resultant force at the MP 

joint. 
MF = Moment due to the thumb 

tip force at the MP joint. 
W1 = Weight of the carpal bone 

(link 1). 
MR = Moment at the CMC joint 

due to the resultant force 
applied at the MP joint. 

W2 = Weight of the phalanges 
(second link). 

MW1 = Moment exerted on the 
CMC joint due to the 
weight of the carpal bone. 

LPH    = Phalangeal length. MW2 = Moment exerted on the 
MP joint due to the weight 
of the phalanges. 

LMC   = Metacarpal length. MMuscles_MP = Muscle moment exerted at 
the MP joint. 

n = Number of muscles. MMuscles_CMC = Muscle moment exerted at 
the CMC joint. 
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m1  = Metacarpal mass.    

m2 = Phalangeal mass.    

g   = Gravitational constant.    

 
 
Next Quarter 

Next quarter we will complete and validate the implementation of the model. We will 
generate time-varying coupled and redundant input-output data. We will create a time-invariant 
forward neural network model of the thumb from these data, and use this forward model to 
average the input-output data and thus eliminate its time-variance. We will also optimize the 
averaged input-output data using a minimum co-activation criterion to eliminate redundancy and 
coupling, obtaining thus a unique solution. Finally, we will use the optimized input-output data 
to train a static feedforward artificial neural network controller. We will test this inverse-model 
feedforward controller isometrically in simulation with the biomechanical model of the thumb. 
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An Implanted Neuroprosthesis For Electrical Stimulation through Nerve- and 
Muscle-based Electrodes and Myoelectric Recording 
 
Contract section: 
E.1.a.vi  Implementation and evaluation of neuroprostheses for high tetraplegia 
 
Introduction 

The goal of this section of the project is to develop the hardware components necessary 
to implement advanced neuroprostheses for high tetraplegia. The key component of this effort is 
the development of an implanted stimulator/telemeter device that is capable of both electrical 
stimulation and myoelectric recording. Specifically, we are designing and fabricating an 
implanted neuroprosthesis that is capable of 12 channels of stimulation and has two channels of 
myoelectric signal (MES) recording, referred to as the implantable stimulator-telemeter-12 (IST-
12). The myoelectric signal recording has been successfully demonstrated in-vivo, and is now 
being implemented with human subjects (in a separate project). With this phase of development 
completed, we are now addressing the specific stimulation capabilities of this device that are 
needed for this contract. Specifically, the device must be capable of safely and effectively 
delivering stimulus parameters that are appropriate for stimulation using muscle-based electrodes 
and nerve-based electrodes.  

 
Design Modifications 

The stimulus output stage of the IST utilizes capacitive coupling to activate the muscle 
tissue via the muscle-based electrodes.  In this capacitively-coupled design, a finite amount of 
inadvertent anodic current, 0.5 milliamps or less, occurs on unstimulated channels during the 
cathodic phase of the stimulated channel.  This poses no problem if all the implanted electrodes 
in the system are muscle-based since the current threshold for muscles is well above 0.5 
milliamps.  In our systems, the current used to activate muscle tissue is normally 20 mA, at least 
40 times this inadvertent anodic current.  Mixed-electrode type (i.e. muscle and nerve electrodes) 
systems like those proposed in this study may pose a problem since the stimulus threshold for 
nerves is at much lower currents than for muscles.  Our inadvertent anodic current “leakage” is 
of sufficient amplitude to activate neural structures in direct contact with nerve cuff electrodes.  
To address this issue and eliminate the inadvertent activation of nerves during stimulation of 
muscle-based electrodes, we have taken the following measures: 1) we modified the design of 
the circuit to create an open–circuit that interrupts the current path to all other electrodes when 
any one electrode from that same device is stimulating.  2) we employed a design feature that 
enables implants to be coded with one of four unique ID codes enabling RF identification of each 
stimulating device and addressing each device uniquely.  Additionally, each implant will 
recognize stimulus commands that are being addressed to other implants.  This will enable 
activation of one stimulator while the others are instructed to remain ‘quiet’ (no stimulation). 

We have bench-tested both circuit modifications with success, and have integrated them 
into the circuit-board design and fabrication.  We are confident that these circuit modifications, 
coupled with spatial separation of the devices within the body, will eliminate the possibility of 



Quarterly Progress Report #15 N01-NS-1-2333 1/31/05 
  PI: R.F. Kirsch, Ph.D. 
 

 25  

inadvertent activation of neural structures enclosed within the implanted cuff electrodes while 
muscle-based electrodes are being stimulated.   
 


